
Economy Informatics, vol. 9, no. 1/2009 87

Genetic Algorithm based Refinement Methods for Security Metrics

Adrian VIŞOIU
Academy of Economic Studies, Bucharest, Romania

Economic Informatics Department
adrian.visoiu@csie.ase.ro

This paper presents two genetic algorithm based model refinement methods used for
vulnerability estimation models. A method presents how model structure refinement is applied
to obtain models that estimate the cumulative number of vulnerabilities for a certain product.
In this case, empirical observation of similarities between consecutive versions of the product
is taken into account. Model structure refinement is presented as procedure. The experimental
results show how the method is applied and the results are discussed. The second method uses
an aggregated performance indicator as selection criterion in the genetic algorithm. It is
shown that simpler models are produced, keeping the quality of estimation comparable with
more complex ones. Experimental results confirm the hypotheses.
Keywords: model structure refinement, vulnerability estimation, genetic algorithms,
validation, security metrics, aggregated performance

Security Metrics
The ISO 9126 standard [1] defines

security as an attribute of the functionality,
related to the ability of a software product to
prevent unauthorized access intentional or
unintentional to programs and data.
An important aspect in assessing security is
represented by assessing vulnerabilities as
defined in [2]. Vulnerabilities represent an
important fraction of the software flaws that
need to be repaired. The study of
vulnerability discovery and fixing process is
necessary for a proper management where
models are developed to support the decision
making. The number of discovered
vulnerabilities may be small in early states,
may increase in maturity stages of the
product and finally may decrease, as the
market looses interest in using the product.
Also, the number of discovered
vulnerabilities may increase exponentially, or
take any other evolution. For software users,
the number of vulnerabilities is important
because it decides the number of patches they
have to apply to the product to keep it safe
from attackers and this is a time consuming
activity.
From the moment a software product is
launched, it enters the maintenance phase.
Efforts are made to implement adaptive and
corrective maintenance including people and

resources. Recording the number of
vulnerabilities discovered for a certain
software product helps estimation of future
values and for comparison between products
from the same developer or different
developers. Public databases like [3], [4] and
[5] keep records of identified vulnerabilities.
Data sources may be extracted in order to
analyze the evolution for a certain software
product.

2 Refinement of Estimation Models
There are many factors that influence the
number of found vulnerabilities in a software
product, of which some important are: the
size of the software, the number of
implemented functions, the market share of
the product, the time elapsed from the release
of the product.
A model for cumulative number of
vulnerabilities estimation must take into
account those factors and other ones as well.
The effort for data collection for such model
is high. In order to simplify, another factor is
considered that aggregates the influence of
all other ones. This factor is time.
The number of vulnerabilities existing in a
software product is estimated using models
developed by specialists. Most of the models
are adaptations from reliability estimation
models. They are used for predicting the

1

88 Economy Informatics, vol. 9, no. 1/2009

cumulative number of vulnerabilities, at a
certain moment in time t, denoted by Ω(t)
and representing the primitive function of the
vulnerability distribution function over time,
starting with the moment of the product
release date. Common model structures are
described in [6] and [7]:
Ω(t) = a*ln(b*t) (thermodynamic model)
Ω(t) = a/(b*e-ct+1) (logistic model)
Ω(t) = a*t2+b*t (linear model)
Ω(t) = a(1-e-bt) (exponential model).
For each analyzed software product,
coefficients are estimated and computed
values are compared with the real ones. Each
model gives best results for certain software
products.
The fitness function FIT used to assess the
statistical performance of a model is the
mean squared error.

In the context of model generation,
refinement is a procedure that takes a model
M of complexity C and transforms it to a
model M’ of complexity C’, such way that
C>C’ and the fitness of M’ doesn’t differ
substantially from the fitness of M as
presented in [8]. The complexity indicator
takes into account the number of operands
and operators and the fitness is chosen
among the existing statistical indicators that
assess the quality of a model. A comparison
between software metrics refinement
techniques is included in [9].

3 Genetic Algorithm based Model
Structure Refinement
When using model generators described in
[10], the analyst must pay attention to the
distribution of generated model structures in
order to find patterns that indicate a model
structure is more fit than others for the
purpose of the research. Consider a list of
model structures S1, S2, …, SL, used to
estimate the levels of a certain dependent
variable, according to a list of factors.
Structure refinement is defined as a
procedure that takes the initial list of
structures S1, S2, …, SL and retains a subset
Si1, Si2, …, SiL’ where L’<L, and the subset
Si1, Si2, …, SiL’ contains the best structures
according to a performance criterion.

There are peculiarities that make the
evolutionary algorithms fit for this approach
as presented in [11]. Gene expression
programming, introduced in [12], has a
pseudorandom behavior when building the
initial population; the genetic operators like
selection, mutation, the exchange of genetic
material are also applied randomly. When
running the algorithm for several times, using
the same dataset, it is observed that the
number of generated structure types is small,
the algorithm having a stronger preference
for generating models from certain structures
than from others.
Consider the models M1, M2, …, Mr obtained
after r generation algorithm runs for a certain
dataset. A number of n model structures S1,
S2, …, Sn is obtained, having the relative
apparition frequency f1, f2, …, fn,
respectively, the number of runs being
greater than the number of structures. Each
structure corresponds to a model which was
the best after evolving a certain population.
The list of model structures is sorted in
descending order according to the frequency
of apparition, obtaining the list Sk1,Sk2, …,
Skn, where Sk1 is the most frequent apparition
and Skn is the structure with the least frequent
occurrence. A threshold h is defined and the
first s structures are chosen with respect to
the relation:

<h.
The models Mk1, Mk2, …, Mks are built,
having the corresponding chosen structures
Sk1, Sk2, …, Sks and their coefficients are
estimated using a least squares algorithm.
For each model performance or fitness FIT is
computed and the best models are chosen and
they are subject to further validation of use.
The experimental results aim to show how
model structure refinement helps in building
or choosing a model that is fit to estimate the
cumulative number of vulnerabilities in a
software product, denoted by
CUMULATIVE, when previous versions of
the product are available.
Three versions of Apache HTTPD Server,
1.3, 2.0 and 2.2 are considered. For this open
source project there is a public section where

Economy Informatics, vol. 9, no. 1/2009 89

all the security vulnerabilities are presented
[11]. Data is collected and datasets are built.
For Apache 1.3 and 2.0 the evolution of the
cumulative number of vulnerabilities is given

in Figure 1. Data is available for over 3700
days since the initial release for Apache 1.3
and over 2000 days for Apache 2.0.

Fig. 1. Cumulative number of vulnerabilities discovered and fixed for Apache 1.3 and 2.0

For apache 2.2 the evolution of the
cumulative number of vulnerabilities is given

in Figure 2. The dataset is shorter, containing
records for over 800 days.

.
Fig. 2. The evolution of vulnerabilities for Apache 2.2 and the comparison between the three

products for a similar period

The comparison between the evolutions of
the process for each version for the first 1000
days is also presented in Figure 2.
The evolution of vulnerability discovery and
fixing process shows similar evolution in a
similar time interval. The correlation
coefficient between interpolated values
recorded for a certain version and all the
others is greater than 0.9, which conducts to
an empirical conclusion that the vulnerability
discovery and fixing process follows a

similar evolution for each version of the
product.
The gene expression programming is used to
build models to fit the recorded data. The
generator is run a number of times for each
dataset, such way the analyst observes a
particular distribution of the generated model
structures. The model generation process
conducted to distributions of models
structures for Apache 1.3 and Apache 2.0, as
presented in Table 1.

Table 1. Model structure distributions

Apache 1.3 Apache 2.0
S1: TIMEa 50% S1’: TIMEA 34.78%
S2: A*TIME 4 33.33% S2’: A*TIMEB 26.08%
S3: A*ln(TIME) 16.66% S3’: A*TIME 17.39%
 S4’: TIMEA+B 8.69%
 S5’: A*TIMEB+C 8.69%
 S6’:A*TIME+B 4.34%

90 Economy Informatics, vol. 9, no. 1/2009

After the parameter estimation, for Apache
1.3 and Apache 2.0, the models presented in

Table 2 are obtained.

Table 2. Estimated models

Apache 1.3 Apache 2.0
MS1: CUMULATIVE(TIME)=TIME0.534
FIT=60.31

MS1’: CUMULATIVE = TIME0.495
FIT=24.37

MS2: CUMULATIVE(TIME)=0.027*TIME
FIT=51.93

MS2’: CUMULATIVE = 0.14 * TIME0.772
FIT= 4.36

MS3:CUMULATIVE(TIME)=6.852*ln(TIME)
FIT=345.

MS3’: CUMULATIVE = 0.027*TIME
FIT = 13.28

 MS4’: CUMULATIVE = TIME0.527-7.796
 FIT=6.89

 MS5’: CUMULATIVE = 0.264*TIME0.695-2.619
 FIT=3.59

 MS6’: CUMULATIVE = 0.025*TIME+2.972
 FIT=9.75

As seen, parameter values are very similar
both for TIMEA model structure type and
A*TIME. In the case of the linear model, the
slope is identical. Taking into account the
similarity between the particular evolutions
of the vulnerability fixing and discovery for
all three products it is considered that S1 and
S2 are fit structures to build models to make
estimations also for Apache 2.2. The
estimation of coefficients for Apache 2.2
gives:
M1: CUMULATIVE(TIME) = TIME0.359
FIT=11.06
M2 CUMULATIVE(TIME)=0.016*TIME
FIT= 1.40
In [13] the most frequently generated models
are statistically validated for their
corresponding datasets. For Apache 2.2 the
models are validated using Chi Squared X2
test. For a risk of 5%, for the Apache 2.2
dataset, the threshold value of X2 is 9.48. X2
computed for M1 is 15.77 which fall over the
threshold, which means it is not statistically
significant. The X2 value computed for M2
model is 1.05 which is a significantly smaller
than the threshold and the model is validated.
The statistical validation shows that for the
first period in the life of Apache 2.2 software
product, the M2 linear model is fit to estimate
the number of vulnerabilities. The
cumulative number of discovered and fixed
vulnerabilities is increasing in rate with time.
When looking at the graphs of the other

versions it is observed that there is also a
linear trend after the launch of the product.
M1 model must not be abandoned. It’s
performance must be assessed in practice, as
there is a strong resemblance between the
three products. M1 model might be more fit
for estimation in the second part of the
product life, when the evolution of
cumulative number of vulnerabilities starts to
reduce its slope.
New model structure refinement must be
performed each time new data is available, to
reestimate model coefficients or to observe if
there is a change in the model structure when
the phenomenon changes its evolution.

4 Genetic Algorithm based Model
Structure Refinement by Adapting
Selection Criterion
Applying the genetic operators iteratively
leads to selecting the best individual of a
generation based on a performance criterion
which takes into account the quality of the
estimate on the data set considered. Also, the
selection of individuals that give rise to new
generations is all due to the same
performance indicator; the individuals have a
probability of selection proportional to the
estimation quality of the corresponding
model demonstrates.
A problem with the construction of analytical
expressions using gene expression
programming is obtaining expressions with

Economy Informatics, vol. 9, no. 1/2009 91

an apparent high complexity, which is in
contradiction with the objectives of refining.
However, the gross model provided by the
algorithm loses complexity, if, as expected, it
is in a form they are made all operations
between the original constants.
The criterion used in selecting models and
individuals population of chromosomes is the
mean squared error, MSE, which is a
criterion of minimized. By their nature,
genetic algorithms generate analytical
expressions of high complexity.
A solution to reduce complexity of generated
models is a convenient choice of algorithm
specific parameters, if analyst recourses to
one or more of the following options:
• restricting the list of variables
• restricting the list of operators,

recommending the use of operators with
small number of arguments

• limiting the size of a chromosome using
chromosome with a single gene or small
number of genes

• limiting maximum size of a gene by
choosing a small value for the gene head
parameter.

There are cases where small values chosen
for the above parameters lead to adverse
results relating to the identification of links,
failure of operations between initial constant
to restore true values of coefficients.
To obtain refining, the use of the aggregate
indicator is proposed, which takes into
account both aspects identified in the model,
its performance statistics and complexity of
the expression. A proposed structure for the
aggregated performance AP indicator is
calculated using the formula used in [14]:

AP(M) = MSE(M)p . C(M)q, where

MSE(M) –MSE indicator for model M;
C(M) – complexity of M.
 p – importance coefficient for statistical
performance indicator, p>=0
q - importance coefficient for complexity,
q>=0.
Aggregate indicator of performance, AP

retains the minimum criteria that needs to be
fulfilled as complexity must be minimized,
deviations should be minimized, and the
composition by multiplication in the ranges
of values for the operands lead to an
increasing function for both values. By using
AP indicator the algorithm is forced to
promote individuals which have developed
both characteristics of good estimation of the
phenomenon and small complexity, serving
the objectives of refining models. Depending
on the values chosen for parameters p and q,
the importance given to each criterion shall
be considered.
The complexity of the model obtained using
aggregate indicator as selection criterion in
the genetic algorithm drops and the capacity
to estimate the phenomenon studied remains
comparable to that of complex models
obtained taking into account only the
statistical performance indicators.
Another indicator of aggregate performance
structure has the form presented in [10]:
AP’(M) =MSEp+Cq,
where elements appear with the same
meaning.
The criterion used by the algorithm for this
type of aggregated performance indicator is
also to be minimized. Generated model
distribution is studied after running for a
number of times the algorithm for a data set,
results are presented in Table 3.
Models are correlated with the corresponding
model structure as shown in Table 4.
Model structures show different frequencies
of apparition as shown in Table 5.
The average complexity of the generated
model structures in this sample is 2.991324.
The average complexity of the generated
model structures in the previous method is
4.795826. There is a decrease in the average
complexity of models generated, highlighting
the simple models with a better quality of
estimates, having their appearance with an
increased frequency compared to refining
method of structure based on only a
statistical indicator of performance. Structure
ranking is shown in Table 6.

92 Economy Informatics, vol. 9, no. 1/2009

Table 3. Generated models using as fitness function AP’ with p=1 q=2
ID Model expression Complexity AP’

(p=1, q=2)
M1 (TIME/(-0.7917/-0.0318)) 6.75 224.08
M2 ((TIME^0.3053)/0.3053) 6.75 118.00
M3 (TIME^0.4994) 2 29.01
M4 (TIME^0.4927) 2 28.57
M5 (TIME^exp((-0.3632+-0.3632))) 9.50 118.87
M6 ((TIME^exp(0.2926))^0.3492) 9.50 135.06
M7 (TIME*0.0257) 2 18.66
M8 (TIME^0.3737) 2 248.80
M9 (TIME^exp(-0.7347)) 4 47.57
M10 ((TIME^0.4151)+0.4151) 6.75 188.14
M11 ((TIME^0.4894)+-0.1585) 6.75 70.62
M12 (TIME^0.4637) 2 54.73
M13 (0.0827*(TIME*0.1698)) 6.75 213.66
M14 (TIME^(exp(0.3643)*0.3643)) 9.50 150.33
M15 (TIME^0.3895) 2 212.20
M16 (TIME^(0.3712^0.6982)) 6.75 71.03
M17 (((-0.6582+0.3100)*TIME)*-0.0977) 12.75 223.07
M18 ((TIME^0.0814)/0.0814) 6.75 225.18
M19 ((0.6948+TIME)^(0.6948* 0.6948)) 12.75 191.84
M20 (((-0.9328+0.4791)+ 0.4791)* TIME) 12.75 178.25
M21 (TIME^0.4637) 2 54.73
M22 (0.6893+(TIME^exp(-0.8005))) 9.50 161.28
M23 (TIME^0.4115) 2 160.73
M24 (TIME^(exp(exp(0.5545))^-0.4340)) 12.75 205.19
M25 (-0.0318/(-0.7917/TIME)) 6.75 224.08
M26 ((TIME*-0.1369)*-0.2264) 6.75 74.56

Table 4. Correspondence between generated models and identified structures
Model Structure Model Structure
M1 A*TIME M14 TIMEA
M2 A*TIMEB M15 TIMEA
M3 TIMEA M16 TIMEA
M4 TIMEA M17 A*TIME
M5 TIMEA M18 A*TIMEB
M6 TIMEA M19 (A+TIME)B

M7 A*TIME M20 A*TIME
M8 TIMEA M21 TIMEA
M9 TIMEA M22 TIMEA+B
M10 TIMEA+B M23 TIMEA
M11 TIMEA+B M24 TIMEA
M12 TIMEA M25 A*TIME
M13 A*TIME M26 A*TIME

Economy Informatics, vol. 9, no. 1/2009 93

Table 5. Apparition frequencies of model structures
Model Structure Complexity Absolute frequency Relative Frequency

A*TIME 2 7 0.2692307
A*TIMEB 6.754888 2 0.076923
TIMEA 2 13 0.5
TIMEA+B 6.754888 3 0.1153846
(A+TIME)B 4 1 0.0384615
Total - 26 1

Table 6 Structure ranking

Structure ID Model Structure Absolute
frequency

Relative
Frequency

Cumulated
frequency

S1 TIMEA 13 0.5 0.5
S2 A*TIME 7 0.2692 0.769231
S3 TIMEA+B 3 0.1153 0.884615
S4 A*TIMEB 2 0.0769 0.961538
S5 (A+TIME)B 1 0.0384 1

Table 7. Generated models for TIMEA structure

Generated model Evolved coefficient
(TIME^exp(-0.72498476445907)) 0.484331948
(TIME^0.451378393662804) 0.451378393662804
((TIME^0.519262224211945)^0.957872770707064) 0.497387145
(TIME^exp(-0.616214980658244)) 0.539984426
(TIME^0.530303061255395) 0.530303061255395
((TIME^0.72121787337643)^0.72121787337643) 0.520155221
(TIME^exp(-0.821984323590055)) 0.439558562
(TIME^0.472517949749026) 0.472517949749026
(TIME^0.514797061921468) 0.514797061921468
((TIME^exp(0.349290777626117))^0.349290777626117) 0.495315794
(TIME^0.470532909254792) 0.470532909254792
(TIME^(-0.321436142698599/-0.733539882923262)) 0.43819859
(TIME^exp(-0.644560026770718)) 0.52489343
(TIME^0.469861407983052) 0.469861407983052
(TIME^0.462390707089748) 0.462390707089748
(TIME^0.476668837702213) 0.476668837702213
(TIME^exp(-0.644560026770718)) 0.52489343
(TIME^(0.681852963604896*0.681852963604896)) 0.464923464
(TIME^0.489165376633948) 0.489165376633948
(TIME^0.500250477111084) 0.500250477111084
(TIME^exp(-0.662999510608148)) 0.515303356
(TIME^0.471989210914815) 0.471989210914815

The first two structures that the algorithm
proposes are also presented using the
structure refinement method. Using the
aggregate performance indicator as a
criterion for ordering those simpler structures
represent about 77% of all models generated.

The MS1 model that corresponds to S1
structure has the form:
MS1: CUMULATIVE = TIME0.495.
The MS2 model is obtained from S2 structure
after estimating the coefficients and has the
form:

94 Economy Informatics, vol. 9, no. 1/2009

MS2: CUMULATIVE = 0.027*TIME.
The characteristics of those models have
been presented previously.
To study the influence of using the
aggregated performance indicator over the
distribution of evolved constants and the

placement of classically estimated
coefficients, the generated models
corresponding to the TIMEA structure are
presented in Table 7.
Descriptive statistics is presented in Table 8.

Table 8. Descriptive statistics for model coefficients

Indicator Value
Mean 0.488855
Median 0.486749
Mode 0.524893
Standard deviation 0.000887
Range 0.101786
Minimum 0.438199
Maximum 0.539984
Sum 10.7548
Number 22
Trusted range(95.0%) 0.013201

With a probability of 95%, the mean of the
evolved coefficient population is range
[0.488855-0.013201; 0.488855+0.013201],
containing the value of the classically
estimated coefficient. It is shown that using
the aggregated performance indicator as
selection criterion does not influence the
capacity of the algorithm to converge to valid
coefficients.

5 Conclusion
Model structure refinement helps analysts by
automating model generation process, using
verified generation algorithms and by
automating model selection process, using
objective criteria for selection.
Model structure refinement is necessary in
order to reduce the almost infinite solution
space containing models that estimate the
value of a dependent variable, to a small set.
Using genetic algorithms for model
generation, the analyst has control over the
parameters of the algorithm, over the operand
types, over the selection criteria, having the
instruments to create less complex, but fit
and easy to interpret models. The best model
is recorded for a large number of algorithm
runs while observing if there are model

structures that have a higher frequency of
apparition. The set of selected structures
with higher occurrence is used to build
models.
Validation is necessary, when choosing a
model, but also, during effective usage, the
results obtained through the model must be
compared with the real recorded values. If
the differences are large, a new estimation of
coefficients or a new model structure
refinement must be done to adapt to the new
evolution of the process.
The aggregated performance indicator shows
its usefulness for model selection, in order to
respect the principles of model refinement.
The obtained results indicate that it does not
affect the ability of the algorithm to give a
good solution for the given dataset.
Both proposed methods highlight the fact
that the quality of the solutions increases as
the algorithm is run for a sufficient number
of times. This way, the negative influence of
random elements inside the algorithm is
removed.
References
[1] ISO/IEC 9126-1:2001, Software

engineering - Product quality - Part 1:
Quality model, International

Economy Informatics, vol. 9, no. 1/2009 95

Organization for Standardization, 2001.
[2] S. Culp, Definition of a Security

Vulnerability, 2008, Available at:
http://technet.microsoft.com/ro-
ro/library/cc751383(en-us).aspx

[3] Common Vulnerabilities and Exposures
[Online], Available at:
http://www.cve.mitre.org/

[4] Security Focus [Online], Available at:
http://www.securityfocus.com/bid

[5] The Open Source Vulnerability Database
[Online], Available at: http://osvdb.org/

[6] O. H. Alhazmi and Y. K. Malaiya,
"Modeling the Vulnerability Discovery
Process," in Proc. 16th International
Symposium on Software Reliability
Engineering, Chicago, USA, 2005, pp.
129-138

[7] O. H. Alhazmi, Y. K. Malaiya and I. Ray,
“Measuring, Analyzing and Predicting
Security Vulnerabilities in Software
Systems,” Computers and Security
Journal, vol. 26, Issue 3, pp. 219-228,
May 2007.

[8] I. Ivan and A. Visoiu, “Rafinarea
metricilor software,” Economistul,
supliment Economie teoretică si
aplicativă, No.1947-2973, 2005.

[9] I. Ivan and A. Visoiu, “A Comparative
Analysis of Software Refinement

Techniques”, in Proc. Cybernetics and
Information Technologies, Systems and
Applications CITSA 2008, Orlando,
Florida, USA, 2008, pp. 235-239.

[10] A. Visoiu, “Rafinarea metricilor
software”, PhD Thesis, Academy of
Economic Studies, Bucharest, 2009.

[11] Apache httpd Security Report [Online],
Available at:
http://httpd.apache.org/security_report.ht
ml

[12] C. Ferreira, Gene Expression
Programming: Mathematical Modeling
by an Artificial Intelligence 2nd Edition,
Springer Publishing, 2006.

[13] A. Visoiu, “Structure Refinement for
Vulnerability Estimation Models using
Genetic Algorithm Based Model
Generators”, Informatica Economică
Journal [Online], Vol. 13, No. 1 , 2009,
Available at:
http://revistaie.ase.ro/content/49/007%2
0-%20Visoiu.pdf

[14] A. Visoiu, “Performance Criteria for
Software Metrics Model Refinement”,
Journal of Applied Quantitative
Methods [Online], Volume 2, Issue 1,
pp. 118-128, 2007, Available at:
http://www.jaqm.ro/issues/volume-
2,issue-1/pdfs/visoiu.pdf

Adrian VISOIU graduated the Bucharest Academy of Economic Studies, the
Faculty of Cybernetics, Statistics and Economic Informatics. He has a master
degree in Project Management. He is an assistant lecturer in the Economic
Informatics Department of the Bucharest Academy of Economic Studies. He
published 16 articles alone or in collaboration and he is coauthor of three
books. His interests include: object oriented programming, data structures,
multimedia programming, software quality management, software metrics

refinement.

